Shipping Plan

Problem Description

In 2044 AD, humanity entered the cosmic epoch.

There are n planets in country L and n-1 two-way routes, each of which is established between two planets. These n-1 routes connect all the planets in L.

P is in charge of a logistics company. The company has many shipping plans. Each shipping plan is like this: there is a logistics ship that needs to fly from planet U_i to planet V_i along the fastest space path. Obviously, it takes time for a ship to travel through a route. For route j, it takes t_j time for any ship to travel through it, and there is no interference between any two ships.

To encourage scientific and technological innovation, the king of country L agrees to allow P's logistics company to participate in the route construction of country L, that is, allow P to transform a route into a wormhole, and the spaceship will pass through the wormhole without consuming time.

Before the completion of the wormhole construction, P's logistics company pre-connected M transportation plans. After the construction of the wormhole is completed, these m shipping plans will start at the same time, and all ships will depart together. When all the M shipping plans are completed, the stage work of P's logistics company will be completed.

If P is free to choose which channel to transform into a wormhole, try to find out what is the shortest time it takes for P's logistics company to complete the phased work.

Input

The first line includes two positive integers n and m, representing the number of planets in country L and the number of shipping plans pre-connected by small P. The planets are numbered from 1 to n.

The next n-1 lines describe the construction of the routes, where line i contains three integers a_i , b_i , and t_i , which means that the two-way route i is built between the two planets a_i and b_i , and it takes t_i time for any spacecraft to pass through it.

The next M lines describe the situation of the shipping plan, where the j^{th} line contains two positive integers u_j and v_j , indicating that the j^{th} shipping plan is to fly from planet u_j to planet v_j .

Output

There is an integer representing the minimum time it takes for P's logistics company to complete the stage work.

Sample Input

Sample Output

Data Range

The range and characteristics of all test data are shown in the table below:

Test Point	n=	m=	Constraints
1	100	1	
2		100	The ith route connects ith planet and i+1th planet
3			
4	2000	1]
5	1000	1000	The ith route connects ith planet and i+1th plane
6	2000	2000	
7	3000	3000	
8	1000	1000	
9	2000	2000	1
10	3000	3000	1
11	80000	1	
12	100000		
13	70000	70000	The ith route connects ith planet and i+1th plane
14	80000	80000	
15	90000	90000	
16	100000	100000	
17	80000	80000	
18	90000	90000	1
19	100000	100000]
20	300000	300000	
All data			l≤a,,b,u,vj≤n,0≤ti≤1000

Be aware of the constant factor effect on program efficiency.

For 100% of the data, guarantee: $1 \leq a_i, \, b_i \leq n, \, 0 \leq t_i \leq 1000, \, 1 \leq u_i, v_i \leq n.$